Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 11(21): 3821-3828, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180302

RESUMO

The very high specific capacity of Li metal makes it an ideal anode for high-energy batteries. However, Li dendrite growth and the formation of isolated (or "dead") Li during repeated Li plating/stripping processes leads to a low coulombic efficiency (CE). In this work, we discovered, for the first time, that electrode edge effects play an important role in the failure of Li-metal batteries. The dead Li formed on the edge of Cu substrate was systematically investigated through SEM, energy-dispersive X-ray (EDX) spectroscopy, and 2D X-ray photoelectron spectroscopy (XPS). To minimize the Li loss at the edge of the Cu exposed to pressure-free space, a modified Li∥Cu cell configuration with a Cu electrode smaller than Li metal is preferred. It was clearly demonstrated that using an electrode configuration with a minimal open space or pressure-free space across electrodes can reduce accumulation of dead Li during cycling and increase Li CE. This phenomenon was also verified in Li-metal batteries (Li∥LiNi1/3 Mn1/3 Co1/3 O2 ) and should be considered in the design of practical Li-metal batteries.

2.
Nano Lett ; 17(11): 6968-6973, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29048916

RESUMO

The magnetic susceptibility of synthesized magnetite (Fe3O4) microspheres was found to decline after the growth of a metal-organic framework (MOF) shell on the magnetite core. Detailed structural analysis of the core-shell particles using scanning electron microscopy, transmission electron microscopy, atom probe tomography, and57Fe-Mössbauer spectroscopy suggests that the distribution of MOF precursors inside the magnetic core resulted in the oxidation of the iron oxide core.

3.
Sci Rep ; 6: 37586, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876869

RESUMO

The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.

4.
Adv Mater ; 26(45): 7649-53, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25327755

RESUMO

A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...